Paracatalytic modification of aldolase: a side reaction of the catalytic cycle resulting in irreversible blocking of two active-site lysyl residues.
نویسندگان
چکیده
Paracatalytic enzyme modifications result from the oxidation of enzyme-substrate carbanions by extrinsic oxidants. During the oxidation of enzyme-activated substrates, transiently reactive intermediates are generated which, without being released from the enzyme, modify groups at the active site. For enzymes producing carbanion intermediates, the combination of the normal substrate with a suitable electron acceptor has thus been proposed as a highly specific binary system for their active site-directed modification. In this study, the structural features of paracatalytically modified fructose-1,6-bisphosphate aldolase (D-fructose-1,6-bisphosphate D-glyceraldehyde-3-phosphate lyase, EC 4.1.2.13) from rabbit muscle have been elucidated. This enzyme is completely inactivated within 60 min in the presence of fructose 1,6-bisphosphate in saturating concentration and 0.5 mM hexacyanoferrate(III) (pH 7.6, 25 degrees C). The inactivation is caused by covalent incorporation of one triosephosphate derivative per subunit. Peptide analysis showed that the triosephosphate derivative forms an intrachain crosslink between lysine-146 and lysine-227. According to previous independent experimental evidence, both lysyl residues are located at the active site: the epsilon-amino group of lysine-227 forms a Schiff base intermediate with the carbonyl group of the substrate [Lai, C. Y., Nakai, N. & Chang, D. (1974) Science 183, 1204-1206] and alkylation of lysine-146 by the affinity labeling reagent N-bromoacetylethanolamine phosphate inactivates the enzyme [Hartman, F. C. & Brown, J. P. (1976) J. Biol. Chem. 251, 3057-3062]. The present data thus establish paracatalytic modification as a mode of active site-directed enzyme modification.
منابع مشابه
Accelerator mass spectrometry for assaying irreversible covalent modification of an enzyme by acetoacetic ester
Protein modification (sometimes known as crosslinking) often requires two or more steps to affix a small molecule irreversibly. Two-step reductive alkylation of the enzyme rabbit muscle aldolase with ethyl 3-C-acetoacetate and sodium cyanoborohydride attaches less radioactivity than with cyanoborohydride omitted. The C level incorporated into aldolase corresponds to only about 15–30 modified pr...
متن کاملThe Human Thioredoxin System: Modifications and Clinical Applications
The thioredoxin system, comprising thioredoxin (Trx), thioredoxin reductase (TrxR) and NADPH, is one of the major cellular antioxidant systems, implicated in a large and growing number of biological functions. Trx acts as an oxidoreductase via a highly conserved dithiol/disulfide motif located in the active site ( Trp-Cys-Gly-Pro- Cys-Lys-). Different factors are involved in the regulation of T...
متن کاملAffinity labeling of a previously undetected essential lysyl residue in class I fructose bisphosphate aldolase.
The affinity label N-bromoacetylethanolamine phosphate (BrAcNHEtOP) has been used previously at pH 6.5 to identify His-359 of rabbit muscle aldolase as an active site residue. We now find that the specificity of the reagent is pH-dependent. At pH 8.5, alkylation with 14C-labeled BrAcNHEtOP abolishes both fructose-1,6-P2 cleavage activity and transaldolase activity. The stoichiometry of incorpor...
متن کاملThe origin of enantioselectivity in aldolase antibodies: crystal structure, site-directed mutagenesis, and computational analysis.
Catalytic aldolase antibodies, generated by reactive immunization, catalyze the aldol reaction with the efficiency of natural enzymes, but accept a much broader range of substrates. Two separate groups of aldolase antibodies that catalyze the same aldol reactions with antipodal selectivity were analyzed by comparing their amino acid sequences with their crystal structures, site-directed mutagen...
متن کاملCarbamylation of aspartate transaminase and the pK value of the active site lysyl residue.
Abnormal lysyl residues can be detected in aspartate transaminase by following the rate of reaction of amino groups with KN14CO and the rate of enzymatic inactivation. Peptide isolation subsequent to carbamylation of the apoenzyme produces a peptide which is absent in the carbamylated holoenzyme. The composition of the carbamylated peptide matches that of a tryptic peptide containing the active...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Proceedings of the National Academy of Sciences of the United States of America
دوره 76 6 شماره
صفحات -
تاریخ انتشار 1979